首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25432篇
  免费   2771篇
  国内免费   2538篇
化学   2725篇
晶体学   53篇
力学   2042篇
综合类   644篇
数学   18786篇
物理学   6491篇
  2024年   21篇
  2023年   198篇
  2022年   311篇
  2021年   457篇
  2020年   512篇
  2019年   547篇
  2018年   552篇
  2017年   749篇
  2016年   826篇
  2015年   614篇
  2014年   1272篇
  2013年   1727篇
  2012年   1300篇
  2011年   1594篇
  2010年   1418篇
  2009年   1759篇
  2008年   1761篇
  2007年   1866篇
  2006年   1630篇
  2005年   1537篇
  2004年   1304篇
  2003年   1170篇
  2002年   1009篇
  2001年   897篇
  2000年   817篇
  1999年   691篇
  1998年   642篇
  1997年   599篇
  1996年   460篇
  1995年   363篇
  1994年   305篇
  1993年   220篇
  1992年   188篇
  1991年   163篇
  1990年   164篇
  1989年   110篇
  1988年   106篇
  1987年   91篇
  1986年   77篇
  1985年   103篇
  1984年   85篇
  1983年   75篇
  1982年   80篇
  1981年   79篇
  1980年   58篇
  1979年   47篇
  1978年   40篇
  1977年   29篇
  1976年   30篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
The goal of this article is to discuss the Simple Equations Method (SEsM) for obtaining exact solutions of nonlinear partial differential equations and to show that several well-known methods for obtaining exact solutions of such equations are connected to SEsM. In more detail, we show that the Hirota method is connected to a particular case of SEsM for a specific form of the function from Step 2 of SEsM and for simple equations of the kinds of differential equations for exponential functions. We illustrate this particular case of SEsM by obtaining the three- soliton solution of the Korteweg-de Vries equation, two-soliton solution of the nonlinear Schrödinger equation, and the soliton solution of the Ishimori equation for the spin dynamics of ferromagnetic materials. Then we show that a particular case of SEsM can be used in order to reproduce the methodology of the inverse scattering transform method for the case of the Burgers equation and Korteweg-de Vries equation. This particular case is connected to use of a specific case of Step 2 of SEsM. This step is connected to: (i) representation of the solution of the solved nonlinear partial differential equation as expansion as power series containing powers of a “small” parameter ϵ; (ii) solving the differential equations arising from this representation by means of Fourier series, and (iii) transition from the obtained solution for small values of ϵ to solution for arbitrary finite values of ϵ. Finally, we show that the much-used homogeneous balance method, extended homogeneous balance method, auxiliary equation method, Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method and first integral method are connected to particular cases of SEsM.  相似文献   
102.
103.
本文在不确定理论的框架下,研究一类带背景状态变量的最优控制模型.在乐观值准则下,利用不确定动态规划的方法,证明了不确定最优性原则,得到最优性方程.作为应用,求解一个固定缴费(DC)型养老金的最优投资策略问题,在乐观值准则下,以工资变量为背景状态变量,建立养老金模型.通过求解不确定最优性方程得到最优投资策略和最优支付率.  相似文献   
104.
The ability of the polymer-based graphitic carbon nitride (g-C3N4) as a gas sensor toward NO, NO2, CO, CO2, SO2, SO3, and O2 gasses is assessed using density functional theory (DFT) calculations in terms of energetic and electronic transport characteristics. In particular, this study is aimed to explore the role of zigzag and armchair edges of the g-C3N4 sheet on sensing performances. The electronic properties of adsorption systems, such as Bader charge analysis, band gaps, work function, and density of states (DOS), are used to understand the interaction between the adsorbed gas molecules and the g-C3N4 sheet. Our calculated results indicate that SOx (SO3 and SO2) gasses have higher adsorption energies on the g-C3N4 sheet than other gasses. Furthermore, the transport properties, such as current–voltage (I-V) and resistance-voltage (R-V) curves along the zigzag and armchair directions are calculated using the non-equilibrium Green's function (NEGF) method to understand the performance of the g-C3N4 sheet as a prominent conductive/resistive sensor. The I-V/R-V results indicate that the zigzag g-C3N4 sheet has excellent sensing ability toward SOx gasses at low applied voltages. However, the presence of H2O degrades the sensing performance of the armchair g-C3N4 sheet. Theoretical recovery time has also been calculated to evaluate the reusability of g-C3N4 sheet-based gas sensors. Our results reveal that the zigzag g-C3N4 sheet-based sensing device has a remarkably high sensitivity (>300%) and selectivity toward SOx gasses and has the potential to work in a complex environment.  相似文献   
105.
A novel strategy for the construction of many-electron symmetry-adapted wave function is proposed for ab initio valence bond (VB) calculations and is implemented for valence bond self-consistent filed (VBSCF) and breathing orbital valence bond (BOVB) methods with various orbital optimization algorithms. Symmetry-adapted VB functions are constructed by the projection operator of symmetry group. The many-electron symmetry-adapted wave function is expressed in terms of symmetry-adapted VB functions, and thus the VB calculations can be performed with the molecular symmetry restriction. Test results show that molecular symmetry reduces the computational cost of both the iteration numbers and CPU time. Furthermore, excited states with specific symmetry can be conveniently obtained in VB calculations by using symmetry-adapted VB functions.  相似文献   
106.
Due to its outstanding physical properties, CdTe is used to fabricate high efficiency solar cells. However, its high work function poses a challenge, and hence, to fabricate an efficient CdTe-based solar cell, Cu-doping may be useful. Here, we present the role of temperature-dependent Cu-doping in radio frequency sputter-deposited CdTe films and the related changes occurring in their optical, electrical, structural and microstructural properties. For instance, Cu-doping at different temperatures leads to an increase in the grain size and a reduction in the optical reflectance with increasing temperature. In addition, Kelvin probe force microscopy measurements reveal that the work function is found to be smaller corresponding to the annealing temperature of 473 K, whereas resistivity measurements show that it decreases with increasing temperature (the lowest value of resistivity is found to be 1.8 × 10−2 Ω-cm). To understand the electronic structure of CdTe before and after Cu-doping, we have carried out first-principles density functional theory (DFT) simulation, which reveals a strong hybridization among Cu, Cd and Te atoms. This study paves the way to fabricate efficient Cu-doped CdTe-based solar cells.  相似文献   
107.
The present paper reports the investigation of surface morphology, elemental composition, phase changes and field emission properties of Si ion irradiated nickel (Ni) and titanium (Ti). The Ni and Ti targets have been irradiated with 500 keV Si ions generated by Pelletron accelerator at various fluences ranging from 6.9 × 1013 to 77.1 × 1013 ions/cm2. Stopping range of ions in matter analysis revealed higher values of electronic stopping and sputtering yield for Ni as compared with Ti. For both irradiated metals, electronic energy loss dominant over the nuclear stopping. The growth of induced surface structures have been analysed by using field emission scanning electron microscopy (FESEM) analysis. In case of Ni, as the ion fluence increases from 6.9 × 1013 to 65.8 × 1013 ions/cm2, the formation of spherical particulates, agglomers and sputtering is observed. Although in the case of Ti, with the increase of Si ion fluence from 11.6 × 1013 to 77.1 × 1013 ions/cm2, the formation of irregular-shaped particulates along with crater and sputtered channels is observed. X-ray diffraction (XRD) analysis shows that no new phase is identified. However, a significant increase in peak intensity is observed with increasing ion fluence. The variation in crystallite size and dislocation line density is also observed as a function of Si ion fluence. Fourier transform infrared spectroscopy analysis shows that no bands are formed after the Si ion irradiation. Field emission properties of ion-structured Ni and Ti are well correlated with the growth of surface structures observed by SEM and dislocation line density evaluated by XRD analysis.  相似文献   
108.
The ferromagnetic and antiferromagnetic wave functions of the KMnF3 perovskite have been evaluated quantum-mechanically by using an all electron approach and, for comparison, pseudopotentials on the transition metal and the fluorine ions. It is shown that the different number of α and β electrons in the d shell of Mn perturbs the inner shells, with shifts between the α and β eigenvalues that can be as large as 6 eV for the 3s level, and is far from negligible also for the 2s and 2p states. The valence electrons of F are polarized by the majority spin electrons of Mn, and in turn, spin polarize their 1s electrons. When a pseudopotential is used, such a spin polarization of the core functions of Mn and F can obviously not take place. The importance of such a spin polarization can be appreciated by comparing (i) the spin density at the Mn and F nuclear position, and then the Fermi contact constant, a crucial quantity for the hyperfine coupling, and (ii) the ferromagnetic–antiferromagnetic energy difference, when obtained with an all electron or a pseudopotential scheme, and exploring how the latter varies with pressure. This difference is as large as 50% of the all electron datum, and is mainly due to the rigid treatment of the F ion core. The effect of five different functionals on the core spin polarization is documented.  相似文献   
109.
Let a function f ∈ C[-1, 1], changes its monotonisity at the finite collection Y := {y1,… ,ys} of s points yi ∈ (-1, 1). For each n ≥ N(Y), we construct an algebraic polynomial Pn, of degree ≤ n, which is comonotone with f, that is changes its monotonisity at the same points yi as f, and |f(x)-Pn(x)|≤c(s)ω2(f,(√1-x2)/n), x∈[-1,1],where N(Y) is a constant depending only on Y, c(s) is a constant depending only on s and ω2 (f, t) is the second modulus of smoothness of f.  相似文献   
110.
药物小分子化学位移的量子化学计算研究   总被引:3,自引:1,他引:2  
核磁共振的谱峰归属对分子结构的确定至关重要,用理论计算方法预测化学位移对谱峰的正确归属是极其有帮助的. 我们用量子化学的方法预测了乙酰水杨酸及其衍生物分子上碳原子的化学位移,并通过比较计算值和实验值得到不同理论计算方法的误差范围. 用HF和DFT理论计算芳环碳的化学位移时,CSGT方法比GIAO方法更为准确. 与其它方法相比,B3PW91//CSGT 在6-311G(d,p)基组下得到的芳环碳的化学位移最接近实验值. 采用B3LYP//GIAO计算时, 使用不同的基组 6-31G(d,p)和6-311++G(3df,3pd)得到的化学位移计算值只有δ 0.01~2.04的差异. MP2方法非常耗时,且对于计算精度的改善并不显著; 并且,由于电子相关性的影响,碳原子周围的电子环境对化学位移计算的准确性影响很大. 与实验值比较,HF方法由于忽略电子相关效应所以表现较差. 另外,碳链的增长对计算准确性也存在一定影响.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号